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Introduction and Motivation



  

Motivation for studying K ππ Decays→

● Direct CPV first observed in late 90s at CERN and Fermilab in K0 ππ:→

measure of indirect CPVmeasure of direct CPV

● In terms of isospin states: ΔI=3/2 decay to I=2 final state, amplitude A2 
ΔI=1/2 decay to I=0 final state, amplitude A0 

     (δI are strong scattering phase shifts.)

(experiment)

● Likely explanation for matter/antimatter asymmetry in Universe, 
baryogenesis, requires violation of CP in decays (direct CPV).

● Amount of direct CPV in Standard Model appears too low to describe 
measured M/AM asymmetry: tantalizing hint of new physics.

● Small size of ε' makes it particularly sensitive to new direct-CPV 
introduced by most BSM models.



  

● ε' also provides a new horizontal band constraint on CKM 
matrix:

[Lehner et al 
arXiv:1508.01801]new constraint from this work!

~2σ tension?



  

The role of the lattice

● In experiment kaons approx 450x (!) more likely to decay into I=0 pi-pi 
states than I=2.   

● Perturbative running to charm scale accounts for about a factor of 2. Is 
the remaining 10x non-perturbative or New Physics?

● The answer is low-energy QCD!  RBC/UKQCD [arXiv:1212.1474, arXiv:1502.00263] 

● Lattice QCD only ab initio, systematically improvable technique for 
studying QCD at hadronic scale.

(the ΔI=1/2 rule) 

Strong cancellation between the two dominant contractions  

heavily suppressing Re(A2).



  

Standard Model Physics 
and Lattice Determination



  

Weak Effective Theory
● At energy scales μ«MW, K ππ decays accurately described by weak →

effective theory.

perturbative Wilson coeffs.

● Qj are 10 effective four-quark operators:

Imaginary part solely responsible for CPV 
(everything else is pure-real)

dominate 
Re(A0), Re(A2)

Q4, Q6 dominate 
Im(A0)

Q7, Q8 dominate 
Im(A2)



  

Lattice Determination of K→ππ

● On the lattice compute                              

● Operators must be renormalized into same scheme as Wilson coeffs: 
Use RI-(S)MOM NPR and perturbatively match to MSbar at high scale.

● Mixing under renormalization, hence Z is a matrix.

● F is finite-volume correction calculated using LL method.



  

● Use computationally expensive (and non-trivial to implement) Trinity-
style all-to-all (A2A) propagators:

 

● Allows us to tune ππ source shape to minimize vacuum overlap. 
● Also to perform all spatial and temporal translations to boost statistics.

● 900 exact low-eigenmodes computed using Lanczos algorithm
● Stochastic high-modes with full dilution of indices

● A0 considerably more difficult for 2 reasons: 

● A2 computable using standard lattice techniques. Most recent 
determination ~12% total error (3% stat) dominated by PT truncation 
in NPR.

Disconnected Diagrams

● “Type-4” disconnected diagrams (coupling between subdiagrams only via 
sea gluons) are very noisy.

[Phys.Rev. D91 (2015) 7, 074502]



  

Physical Kinematics

● Second approach optimal. Straightforward for A2 (APBC on d-quark) but 
additional requirements for A0 not satisfied by APBC:  must conserve 
isospin and apply momentum to both charged and neutral pions.

● Solution: Use G-parity BCs:

                   
● As a boundary condition: (i=+, -, 0)

(moving ground state)

● Important to calculate with physical (energy-conserving) kinematics. 
● With physical masses:
● Requires moving pions!
● This is excited state of the ππ-system. Possibilities: 

● try to perform multi-state fits to very noisy data                               
(esp. A0 where there are disconn. diagrams)  

● modify boundary conditions to remove the ground-state

● Technically very challenging to implement.



  

A0 Calculation

Phys.Rev.Lett. 115 (2015) 21, 212001

(arXiv:1505.07863)



  

Ensemble
● 323x64 Mobius DWF ensemble with IDSDR gauge action at β=1.75. Coarse 

lattice spacing (a-1=1.378(7) GeV) but large,  (4.6 fm)3 box.

● Using Mobius params (b+c)=32/12 and Ls=12 obtain same explicit χSB as 
the Ls=32 Shamir DWF + IDSDR ens. used for ΔI=3/2 but at reduced cost.

● Performed 216 independent measurements (4 MDTU sep.).

● Cost is ~0.9 BG/Q rack-day per complete measurement                                     
 (4 configs generated + 1 set of contractions).

● G-parity BCs in 3 spatial directions results in close matching of kaon and 
ππ energies:

mK=490.6(2.4) MeV

Eππ(I=0) = 498(11) MeV

Eππ(I=2) = 573.0(2.9) MeV

Eπ=274.6(1.4) MeV    (mπ = 143.1(2.0) MeV)



  

Issue with ensemble generation

● Recently discovered mistake with RNG seeding used in ensemble generation: 

- Due to coding error, identical random numbers were used for ηu 
and ηd up to a relative shift of 12 sites in the y-direction: 

- With GPBC we have independent u and d quarks fields.

- Dirac matrix is 2x2 in flavor space with components spanning boundary.     

- Pseudofermion field    

where

independent for each flavor

● At present have not found theoretical interpretation that would allow effect 
to be estimated.

● However, strong empirical evidence that effect is negligible for present 
calculation.

- Persists through entire ensemble.



  

Evidence from               calculation323x64
● Measured plaquette vs. value obtained from non-GPBC ensemble (with 

extrap to same quark mass):

 0.512239(6)  0.512239(3)(7)
GPBC, incorrect ensemble Standard

● More sensitive test: as u, d fields couple to same gauge field we should 
observe correlations between observables separated by 12 in y-direction.

● Statistically significant (3 sigma) 
correlation between plaquettes 
seen at sep 12.

● However effect is tiny, ~5x10-5, 
unlikely to have strong effect on 
paper results where errors are 
100x – 1000x larger.



  

Evidence from 16x32 calculation
3

● 163x32 DWF+Iwasaki (β=2.13) test ensembles.
 

● Smaller lattice separation between correlated sites likely enhances effect.
● Generated an ensemble without error for comparison.
● Presently ~860 meas on corrected ensemble and 670 on uncorrected.
● Cannot see correlation in plaquette due to natural correlation between 

neaby sites. However evidence in link trace:

● Here at 2x10-4 level.



  

uncorrected ensemble

corrected ensemble

● Inconclusive, ~1.5 sigma, ~0.8% discrepancy in pion energy

Eπ
Eππ

● No presently measurable difference between ππ(I=0) effective energies 
(important for validity of K→ππ calculation)

● Error will be corrected as part of our plans to extend the present 
calculation in near future.

● While apparently negligible, this error is uncontrolled theoretically and 
detracts from our claim of a first-principles calculation. 
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[G.Colangelo, private communication]

● Our phase shift                                         
~2.7σ below conventional Roy equation 
determination of 

● Possibly low statistics concealing delayed 
plateau start?

Results of A0 Calculation

[Dominant contribution to Re(A0)] [Dominant contribution to Im(A0)]

Q
2 Q

6

● Matrix elements:



  

● ~85% total error on the predicted Im(A0) due to strong cancellation between 
dominant Q4 and Q6 contributions:

(This work)

(Experiment)

● Good agreement for Re(A0) serves as test for method.

(This work)

despite only 40% and 25% respective errors for the matrix elements.

● First ab initio prediction of Im(A0).

● Dominant systematic (15%) is due to PR truncation errors in the NPR 
exacerbated by low renormalization scale 1.53 GeV.



  

Results for ε'

● Re(A0) and Re(A2) from expt.
● Lattice values for Im(A0), Im(A2) and the phase shifts, 

(this work)=
(experiment)

● Find discrepancy between lattice and experiment at the 2.1σ level.



  

Conclusions and Outlook
● First direct, lattice computation of A0 performed.

● Ensemble generation error recently discovered, evidence suggests effect 
negligible.

● Measured Re(A0) in good agreement with experiment.

● 85% total error on Im(A0) despite 25% and 40% errors on dominant Q6 and Q4 
contributions resp., due to strong mutual cancellation.

● Total error on Re(ε'/ε) is ~3x the experimental error, and we observe a 2.1σ 
discrepancy. Strong motivation for continued study!

● Sys. errors dominated by perturbative truncation errors on the 
renormalization and Wilson coeffs due to low, 1.53 GeV scale.

● Currently computing NPR running to higher energies in order to reduce this 
systematic.

● On final result, stat. error currently dominant. Plan to shortly begin 
programme to greatly increase statistics, thus reducing stat. error  and 
enabling better sys. error estimates.

● Existing, flawed data will be corrected as part of this programme.

Thank you!



  



  

ΔI=3/2 Calculation

  Phys.Rev. D 91 (2015) 7,  074502

      [arXiv:1502.00263 [hep-lat]].



  

Calculation Strategy

● A2 can be computed directly from charged kaon decay:

● Remove stationary (charged) pion state using antiperiodic BCs on d-
quark propagator:

 
Moving ground state!

Stationary ground state....

● Use Wigner-Eckart theorem to remove neutral pion from problem

● APBCs on d-quark break isospin symmetry allowing mixing between 
isospin states: however π+π+ is the only charge-2 state with these Q-
numbers hence it cannot mix.



  

● Results:

● Systematic error completely dominated by perturbative error on NPR and 
Wilson coefficients.

10%, 12% total errors on Re, Im!

● Calculation performed on RBC & UKQCD 483x96 and 643x128 Mobius DWF 
ensembles with (5 fm)3 volumes  and  a=0.114 fm, a=0.084 fm. Continuum 
limit computed.

● Make full use of eigCG and AMA to translate over all timeslices. Obtain 0.7-
0.9% stat errors on all bare matrix elements!



  

An old homework problem
● 1964: CP-violation (indirect) first observed at BNL (Cronin, Fitch et al → 1980 Nobel prize )

● 1973: Framework for Standard Model CPV established (Kobayashi, Maskawa)

● 1993: Publication of first evidence of direct CPV from NA31 expt at CERN.

● 1999: KTeV at FermiLab and NA48 at CERN confirm direct CPV.

● 2001: First quenched calculations of ε' performed by CP-PACS and RBC using single 
particle amplitudes and LO ChPT to correct for missing pion.

● 2001: Technique established for lattice measurement of decays (Lellouch, Luscher)

● 2011: First full threshold (stationary, unphysically-heavy pions) calc. of A0 and A2 using 
dynamical domain wall fermions performed by RBC/UKQCD.

● 2012: First calculation of A2 performed by RBC/UKQCD using DWF with physical 
kinematics, pion masses and large physical volume but single lattice spacing.

● 2015: Continuum calculation of A2 performed by RBC/UKQCD

● 2015: Full threshold calculation of A0 and A2 using Wilson fermions by Ishizuka et al  
[arXiv:1505.05289]

● 2015: (This work) First complete, ab initio determination of ε' with physical kinematics 
and pion masses.



  



  



  

I=0 ππ energy

● Signal/noise deteriorates quickly 
due to vacuum contrib.

● Difficult to determine plateau start. 
Performed both 1- and 2-state fits.

● Our phase shift                                       lower than most pheno estimates, which 
prefer                    . 

● Luscher formula very steep in Eππ: small shifts energy translate to large 
(fractional) errors in δ0. More statistics needed to resolve.

● Using 35° → ~3% change in A0; much smaller than other errs. For consistency 
we choose to use our lattice value.

2% stat err!
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